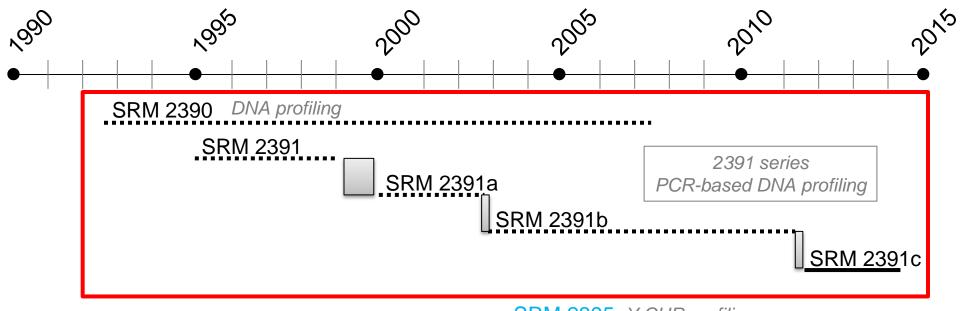


Updating SRM 2391c: PCR-Based DNA Profiling Standard Why and When?

Becky Hill, Margaret Kline, and Peter Vallone National Institute of Standards and Technology


Mid-Atlantic Association of Forensic Scientists

Annual Conference

State College, PA May 22, 2014

NIST Forensic SRM Timeline

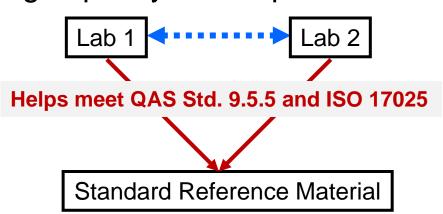
SRM 2395 Y CHR profiling

SRM 2372 Human DNA quantitation

SRM 2392 Mitochondrial sequencing

SRM 2392-I Mitochondrial sequencing

SRM 2391c: PCR-Based DNA Profiling Standard


- Standard Reference Material 2391c is intended primarily for use:
 - Standardization of forensic and paternity quality assurance procedures for PCR-based genetic testing
 - Instructional law enforcement or non-clinical research purposes
 - Quality assurance when assigning values to in-house control materials

SRM 2391c: PCR-Based DNA Profiling Standard

- Components A through D are DNA extracts in liquid form
- Components E and F are DNA spotted on 903 paper or FTA paper
- Certified values are for STR alleles based on length polymorphisms observed using capillary electrophoresis

Genomic DNAs characterized for the expanded CODIS core loci and Y-STRs

Calibration with SRMs enables confidence in comparisons of results between laboratories

SRM 2391c Sales

Unit sales					
FY11 FY12 FY13 YTD					
26	143	112	62		

SRM 2391c Customers

Crime Laboratori

1 ALABAMA DEPT I 2 ALAMEDA COUN

3 ANNE ARUNDEL 4 ANOKA COUNTY

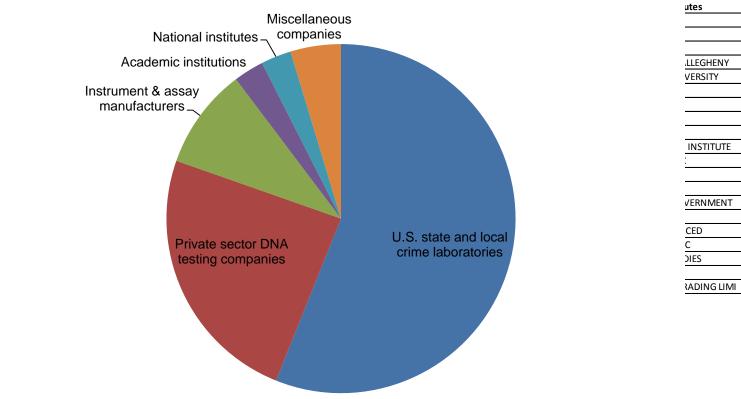
5 ARMED FORCES

6 AZ DPS CRIME LA

7 BALTIMORE COU

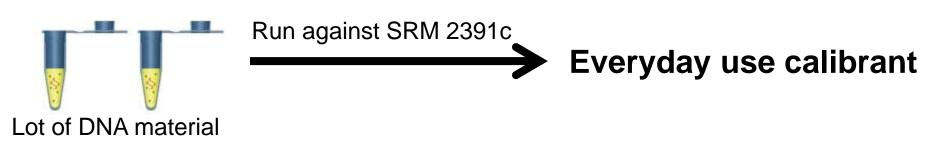
8 BROWARD SHERI 9 BUREAU OF ATF 10 CALIFORNIA DEP

11 CHARLOTTE-MEC 12 CITY OF AUSTIN F 13 CITY OF BOSTON 14 CITY OF SCOTTSC


15 CO BUREAU OF IN 16 CT FORENSIC LAE

17 CUYAHOGA COU

18 DALLAS COUNTY


19 DENVER POLICE I 20 DPS- DNA CRIME

21 ERIE COUNTY 22 FLORIDA DEPT OI 23 FRESNO COUNTY 24 GLENDALE POLIC 25 GREENVILLE COU 26 ILLINOIS STATE P 27 KANSAS BUREAU 28 KENTUCKY STATE 29 KERN COUNTY CF 30 LAKE COUNTY RE

Establishing Traceability to NIST SRM 2391c

- Traceability requires the establishment of an unbroken chain of comparisons to stated references (see <u>http://ts.nist.gov/traceability/</u>)
- In the case of DNA testing with autosomal STR markers, the reference material is SRM 2391c
- Materials deemed traceable to NIST-created materials must have a record associated with them.

Updating NIST SRM 2391c: Topics for Discussion

- Purpose of updating SRM 2391c
- Which loci are currently included in the Certificate of Analysis
- Coverage of the new loci is under development
- Full STR allele sequence coverage to aid future nextgeneration sequencing efforts
- When will the update be complete?

Purpose of Sequencing SRM 2391c

- To further characterize SRM 2391c to determine interesting genomic characteristics within STR fragments (SNPs, insertions/deletions, etc.)
- Initial progress presented as a poster (ISFG 2013)

http://www.cstl.nist.gov/biotech/strbase/pub_pres/Hill-ISFG2013-SRM2391c.pdf

SRM 2391c: PCR-Based DNA Profiling Standard

• Includes 6 components:

Table 1. Description of Components in SRM 2391c

Component		Description	Amount	Concentration ^(a)
A		Anonymous single-source female genomic DNA in TE ⁻⁴ buffer	50 µL	1.1 – 2.1 ng/µL
В	Single- source	Anonymous single-source male genomic DNA in TE ⁻⁴ buffer	50 µL	1.1-2.1 ng/µL
С		Anonymous single-source male genomic DNA in TE ⁻⁴ buffer	50 µL	1.1-2.1 ng/µL
D	Mixture	Mixed-source (Components A and C) genomic DNA in TE ⁻⁴ buffer	50 µL	$1.1-2.1 \text{ ng/}\mu\text{L}$
E	Stain	Anonymous single-source female cells spotted on 903 paper	Two 6 mm punches	7.5×10^4 cells per punch
F	Stain	Anonymous single-source male cells spotted on FTA paper	Two 6 mm punches	7.5×10^4 cells per punch

^(a)DNA concentrations and cell counts are nominal values and are not intended for use as quantitative standards.

https://www-s.nist.gov/srmors/view_cert.cfm?srm=2391C

Certified Genotypes

Concordance with STR Kits

ci Y	Autosomal STR Loci	Y-STR Loci	Autosomal STR Loci
	D1S1656	DYS19	D2S1338
	D8S1115	DYS385a	D2S441
	D12S391	DYS385b	D3S1358
		DYS3891	D5S818
	Penta D	DYS389II	D7S820
DY	Penta E	DYS390	D8S1179
	SE33	DYS391	D10S1248
		DYS392	D13S317
eloger	STR Markers + Amel	DYS393	D16S539
	26% have been Sar	DYS437	D18S51
-		DYS438	D19S433
	*A NIST certified val	DYS439	D21S11
•	which NIST has the h	*Amelogenin	D22S1045
	in its accuracy in th		CSF1PO
	suspected sources of investigated or take		FGA
nc11 111	investigated of land		TH01
dance	e tested for concorda	S2 STD Kite	ΤΡΟΧ
uance			vWA

DNA Sequencing of Alleles

Autosomal STR Loci	Y-STR Loci
D1S1656	DYS448
D8S1115	DYS456
D12S391	DYS458
Penta D	DYS635
Penta E	DY-GATA-H4
SE33	

41 STR Markers + Amelogenin are certified 26% have been Sanger Sequenced

*A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account.

Assigning NIST Certified Values

- Goal: Sanger sequence all autosomal and Y-STR markers in commercial multiplex kits
- The remaining 30 markers are currently being sequenced for Components A-C, E & F to further characterize the repeat structure and flanking sequence.
- New markers in recently released commercial kits (PP Fusion, PP21, PPY23, GlobalFiler, & Yfiler Plus) are also included

Methods for Sanger Sequencing

- NIST DNA sequencing procedures and all sequencing primers were published in 2011 (see S1)
- Note: alternative primers were designed for D19S433

Forensic Science International: Genetics 5 (2011) 329-332

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Short communication

STR sequence analysis for characterizing normal, variant, and null alleles

Margaret C. Kline^{*}, Carolyn R. Hill, Amy E. Decker¹, John M. Butler

National Institute of Standards and Technology, 100 Bureau Drive, M/S 8312, Gaithersburg, MD 20899, USA

Sequencing Flow Chart

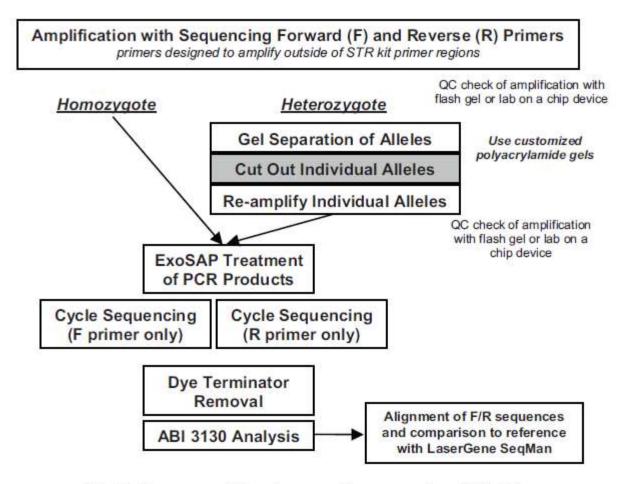
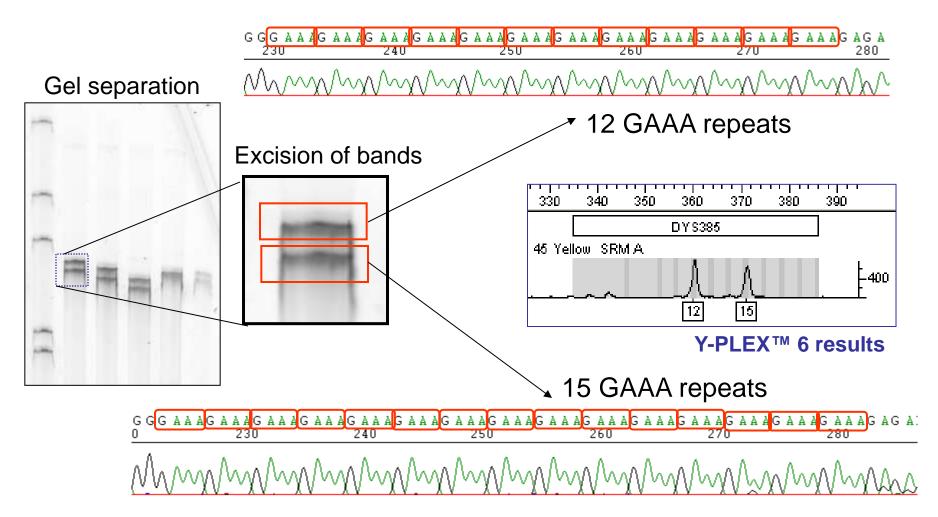



Fig. 1. Summary of the steps used in sequencing STR alleles.

Sequencing Individual Heterozygous (DYS385) Alleles

Kline, M.C., Hill, C.R., Decker, A.E., Butler, J.M. (2011) STR sequence analysis for characterizing normal, variant, and null alleles. Forensic Sci. Int. Genet. 5(4): 329-332

GenBank Reference Sequences

- The GenBank Accession numbers and reference alleles were obtained were based on the May 2004 assembly of the human genome, build 35.
- Sequences were aligned de novo using LaserGene SeqMan software and compared to SeqBuilder maps based on the listed GenBank reference sequences.

	GenBank		GenBank		GenBank		GenBank
Marker	Accession	Marker	Accession	Marker	Accession	Marker	Accession
	Number		Number		Number		Number
D1S1656	G07820	D13S317	AL353628.2	SE33	V00481	DYS393	AC006152
D2S1338	AC010136	D16S539	AC024591.3	TH01	D00269	DYS437	AC002992
D2S441	AC079112	D18S51	AP001534	TPOX	M68651	DYS438	AC002992
D3S1358	AC099539	D19S433	AC008507.6	vWA	M25858	DYS439	AC002992
D5S818	AC008512	D21S11	AP000433	DYS19	AC017019	DYS448	AC025227
D7S820	AC004848	D22S1045	AL022314	DYS385	AC022486	DYS456	AC010106.2
D8S1179	AF216671	CSF1PO	X14720	DYS389	AF140635	DYS458	AC010902
D8S1115	AC090739	FGA	M64982	DYS390	AC011289	DYS635	AC004772
D10S1248	AL391869	Penta D	AP001752	DYS391	AC011302	Y GATA H4	AC011751
D12S391	G08921	Penta E	AC027004	DYS392	AC06152		

Sequencing Results

 All sequencing results of Components A-C for 41 STR markers, including repeat structures of individual alleles, can be found on the following poster:

http://www.cstl.nist.gov/biotech/strbase/pub_pres/Hill-ISFG2013-SRM2391c.pdf

Marker	Component	Allele	Allele Repeat Structure	
D8S1179	С	17	[TCTA] ₂ TCTG [TCTA] ₁₄	
D12S391	A	22	[AGAT] ₁₃ [AGAC] ₈ AGAT	
D12S391	С	19	[AGAT] ₁₃ [AGAC] ₅ AGAT	
D12S391	С	23	[AGAT] ₁₂ [AGAC] ₁₀ AGAT	Novel repeat motifs
D21S11	В	22	[TCTA] ₄ [TCTG] ₆ {[TCTA] ₃ TA [TCTA] ₃ TCA	that were not listed in
DZISTI	D	32	[TCTA] ₂ TCCATA} [TCTA] ₁₄	Butler J.M. (2012) or STRBase fact sheets
SE22	С	21.0	[AAAG] ₂ AG [AAAG] ₃ AG [AAAG] ₉	STREASE TALL SHEELS
SE33	C	31.2	AAAAAG [AAAG] ₂₁ G AAGG[AAAG] ₂ AG	
DYS389II	В	31	[TCTG] ₆ [TCTA] ₁₂ [TCTG] ₃ [TCTA] ₁₀	
DYS458	В	17.2	[GAAA] ₁₅ AA [GAAA] ₂	
DYS635	В	20	$[TCTA]_4 [TGTA]_2 [TCTA]_2 [TGTA]_2 [TCTA]_{10}$	
DYS635	С	21	[TCTA] ₄ [TGTA] ₂ [TCTA] ₂ [TGTA] ₂ [TCTA] ₁₁	

SNPs Found in Repeat Flanking Regions

- Multiple SNPs were found in the DNA sequence in the repeat flanking regions. Primers that bind on SNPs can result in null alleles when STR typing.
- Note that the variants characterized in this work are constrained by the size of the original PCR amplicon generated (Kline et al. 2011).

Marker	Component	Allele	Flanking Region Variants
D5S818	А	12	$T \rightarrow C$ 13 bp us of the repeat
D5S818	В	13	$T \rightarrow C$ 13 bp us of the repeat
D5S818	В	13	$G \rightarrow T 4$ bp ds of the repeat
D5S818	С	10	$T \rightarrow C$ 13 bp us of the repeat
D5S818	С	11	$T \rightarrow C$ 13 bp us of the repeat
D7S820	С	10	$T \rightarrow G 65$ bp ds of the repeat
D13S317	С	11	$A \rightarrow C$ 115 bp ds of the repeat
D16S539	А	10	$A \rightarrow C$ 16 bp ds of the repeat
D16S539	А	10	$C \rightarrow A 95$ bp us of the repeat
D16S539	А	11	$C \rightarrow A 95$ bp us of the repeat
D16S539	В	10	$C \rightarrow A 95$ bp us of the repeat
D16S539	С	10	$C \rightarrow A 95$ bp us of the repeat
Penta E	А	10	$G \rightarrow A$ 123 bp us of the repeat
Penta E	А	10	$A \rightarrow G$ 268 bp us of the repeat
Penta E	А	10	$A \rightarrow C$ 280 bp us of the repeat
Penta E	В	7	$G \rightarrow A$ 123 bp us of the repeat
Penta E	В	7	$A \rightarrow G$ 268 bp us of the repeat
Penta E	В	7	$A \rightarrow C$ 280 bp us of the repeat
Penta E	В	15	$G \rightarrow A$ 123 bp us of the repeat
Penta E	В	15	$A \rightarrow G$ 268 bp us of the repeat
Penta E	В	15	$A \rightarrow C$ 280 bp us of the repeat
TPOX	А	8	$T \rightarrow G$ 148 bp ds of the repeat
TPOX	В	8	$T \rightarrow G$ 148 bp ds of the repeat

Abbreviations: bp = base pairs, us = upstream, ds = downstream

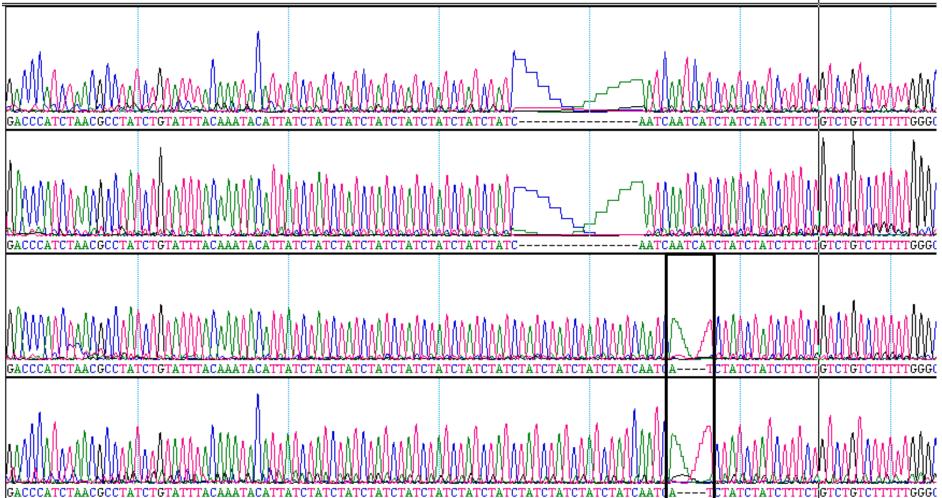
Sequencing Progress

SRM 2391c - Autosomal STR Sequencing					
Marker	Α	В	C	Е	F
D1S1656	Yes	Yes	Yes	Yes	Yes
D2S1338	Yes	Yes	Yes	Yes	Yes
D2S441	Yes	Yes	Yes	Yes	Yes
D3S1358	Yes	Yes	Yes	Yes	Yes
D5S818	Yes	Yes	Yes	Yes	Yes
D6S1043	Yes	Yes	Yes	Yes	No
D7S820	Yes	Yes	Yes	Yes	Yes
D8S1179	Yes	Yes	Yes	Yes	Yes
D8S1115	Yes	Yes	Yes	Yes	Yes
D10S1248	Yes	Yes	Yes	Yes	No
D12S391	Yes	Yes	Yes	Yes	Yes
D13S317	Yes	Yes	Yes	Yes	Yes
D16S539	Yes	Yes	Yes	Yes	Yes
D18S51	Yes	Yes	Yes	Yes	Yes
D19S433	Yes	Yes	Yes	Yes	Yes
D21S11	Yes	Yes	Yes	Yes	Yes
D22S1045	Yes	Yes	Yes	Yes	Yes
CSF1PO	Yes	Yes	No	No	No
FGA	Yes	Yes	Yes	Yes	Yes
Penta D	Yes	Yes	Yes	Yes	Yes
Penta E	Yes	Yes	Yes	Yes	Yes
SE33	Yes	Yes	Yes	Yes	Yes
TH01	Yes	Yes	Yes	Yes	Yes
ΤΡΟΧ	Yes	Yes	Yes	Yes	Yes
vWA	Yes	Yes	Yes	Yes	Yes

SRM 2391c - Y-STR Sequencing					
Marker	В	С	F		
DYS19	Yes	Yes	Yes		
DYS385a	Yes	Yes	No		
DYS385b	Yes	Yes	No		
DYS389I	Yes	Yes	No		
DYS389II	Yes	Yes	Yes		
DYS390	Yes	Yes	Yes		
DYS391	Yes	Yes	Yes		
DYS392	Yes	Yes	Yes		
DYS393	Yes	Yes	Yes		
DYS437	No	No	No		
DYS438	Yes	Yes	Yes		
DYS439	Yes	Yes	Yes		
DYS448	Yes	Yes	Yes		
DYS456	Yes	Yes	No		
DYS458	Yes	Yes	No		
DYS635	Yes	Yes	Yes		
Y GATA H4	Yes	Yes	Yes		

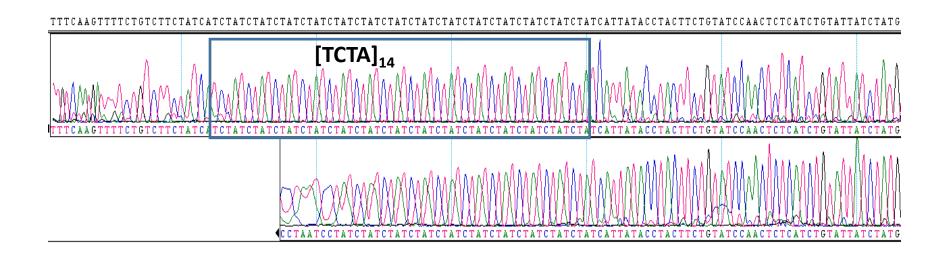
SRM 2391c - New Y-STR Sequencing					
Marker	B	C	F		
DYS449	No	No	No		
DYS460	No	No	No		
DYS481	Yes	Yes	Yes		
DYS518	No	No	No		
DYS533	No	No	No		
DYS549	No	No	No		
DYS570	Yes	Yes	Yes		
DYS576	Yes	Yes	Yes		
DYS627	No	No	No		
DYS643	No	No	No		
DYF387S1ab	No	No	No		

Other Candidates for Sequencing

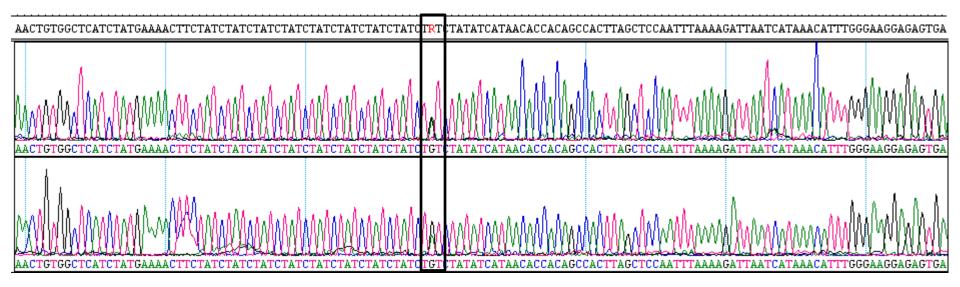

- Additional non-core autosomal STR markers
 - D6S1043 (Sinofiler, PowerPlex 21)
 - 22 miniSTR loci (not including D2S441, D10S1248, D22S1045, D8S1115)
 - Penta C
 - FFFL loci (F13A01, F13B, FESFPS, LPL)
- Y-STR markers to sequence
 - DYS460, DYS481, DYS533, DYS549, DYS643 (PowerPlex Y23, Yfiler Plus)
- Rapidly mutating (RM) Y-STRs
 - 13 total (DYF387S1a/b, DYF399S1, DYF403S1a/b, DYF404S1, DYS449, DYS518, DYS526a/b, DYS547, DYS570, DYS576, DYS612, DYS626, DYS627)

*Loci in red have already been sequenced

Interesting Examples


- Occasionally we find samples that sequence differently than what are genotyped
- Usually this is due to an insertion, deletion, or SNP inside the primer sequences that amplify the marker for that sample
- So far, we have seen three examples of this while sequencing the components of SRM 2391c

D13S317, Component C


D13S317, Component C, is a homozygous sample with an (11,11) genotype. However, it is sequencing as a (12,12) with $[TATC]_{12}$ repeats. The cause is a 4 bp [ATCA] deletion (del) located 6 bp downstream (ds) of the repeat, that is within most, if not all, of the primer sequences used in commercial STR typing kits.

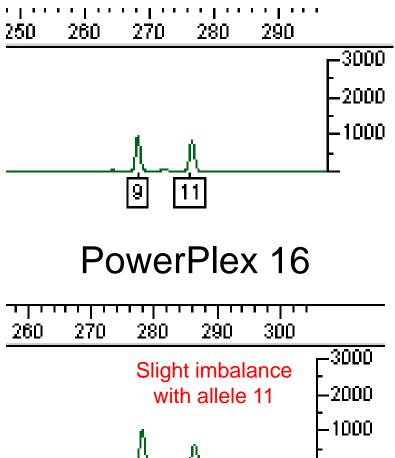
DYS389 I, Component F

DYS389 I, Component F, genotypes as a 13 haplotype. However, it is sequencing as a 14 with [TCTA]₁₄ repeats. The cause is most likely 4 bp deletion (del) that is within most, if not all, of the primer sequences used in commercial STR typing kits (PPY, PPY23, & Yfiler). A forward sequencing primer must be redesigned to capture the deletion.

D2S441, Component A

D2S441, Component A, is a homozygous sample with a (10,10) genotype. This is an unusual example of where each allele in a homozygote has a different repeat structure. One allele has a simple repeat of $[TATG]_{10}$ and the other has an $A \rightarrow G$ SNP, causing the repeat structure to be $[TCTA]_8$ TCTG TCTA. This is evident because of the mixture of the A and G bases within the repeat indicating that one allele has the A and the other has the G.

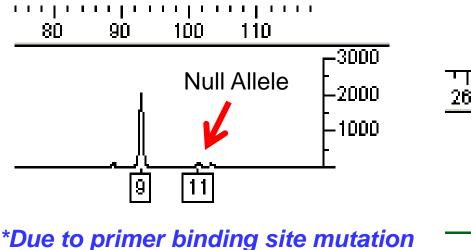
SRM 2391c STR Kit Testing

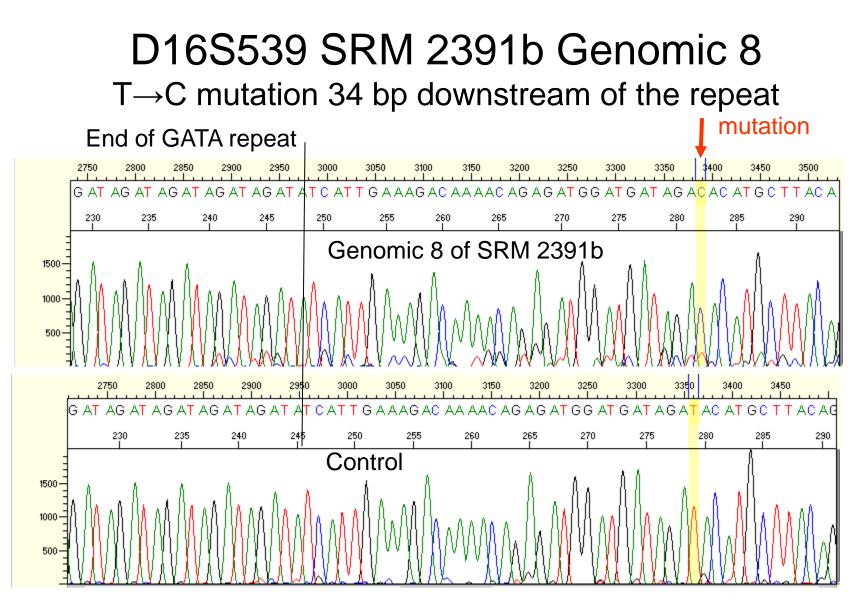

- With the expansion of the CODIS database, many new larger multiplexes have recently been released and new instruments are being run
 - PP Fusion and GlobalFiler
 - 3500, 3500xl
- First step at NIST is to test SRM 2391c with all new STR typing kits
 - Concordance with NIST reference materials is important

SRM 2391b/2391c PCR-Based Profiling Standard

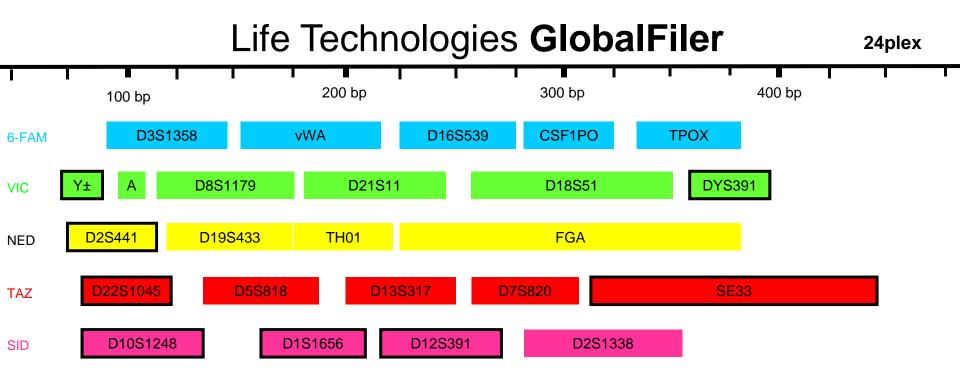
- The first set of samples run with new STR multiplex kits is SRM 2391b/SRM 2391c
- All new kits tested have been completely concordant with the certified values of all markers for each component for SRM 2391b and 2391c
- One exception for SRM 2391b: MiniFiler
 Genomic 8 with D16S539

SRM 2391b Genomic 8 with D16S539 Identifiler


All allele calls with MiniFiler for CSF1PO, D7S820, D13S317, D18S51, D21S11, FGA, and D16S539 (with the exception noted below) **match previously certified values.**

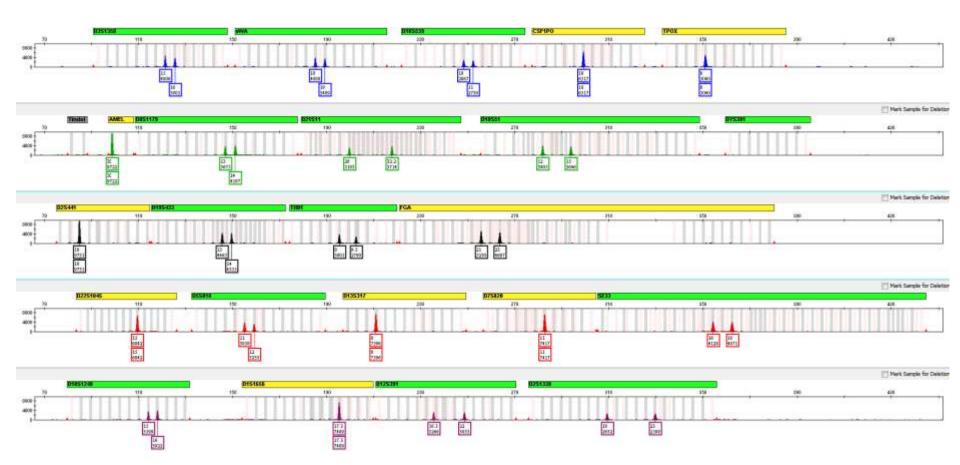


9


11

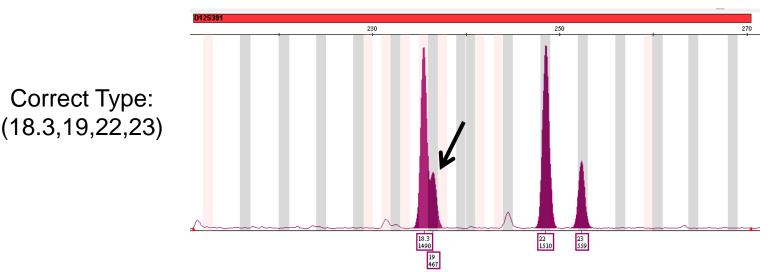
MiniFiler

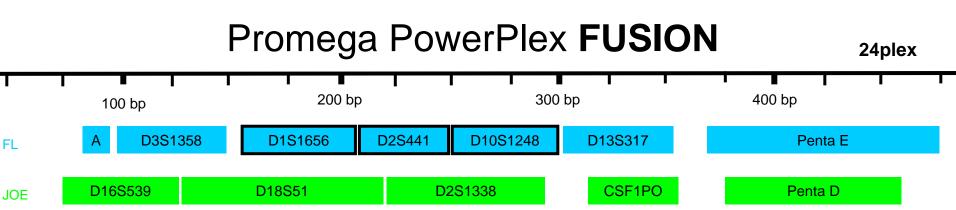
Position of the T \rightarrow C probably affects the reverse primer of Minifiler and is the 3rd base found the 5'end of the Reverse PP16 primer. This could explain the imbalance of the allele seen when using PP16.


- 24 STR loci in 6 dyes (3500 use or 3130 upgrade required)
 - Includes SE33 and a Y-indel
- GlobalFiler Express: direct amplification capabilities
 - Single source samples: 40 min amplification
- GlobalFiler Casework (not yet available)

Two separate kits

- Casework samples: 80 min amplification
- GlobalFiler gives ~12 orders of magnitude improvement using the NIST 1036 data set


http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Human-Identification/globalfiler_str_kit.html


Component A

SRM 2391c Concordance: GlobalFiler

- All SRM 2391c components run with GlobalFiler Casework were concordant at all loci
 - Exception: Y indel was not included in the comparison because no other kits use this marker
- Component D at D12S391 shows 1 bp resolution (run on 3500xl):

D7S820

D5S818

FGA

DYS391

D22S1045

TPOX

• 24 STR loci in 5 dyes (3130 and 3500 instrument use)

D21S11

D19S433

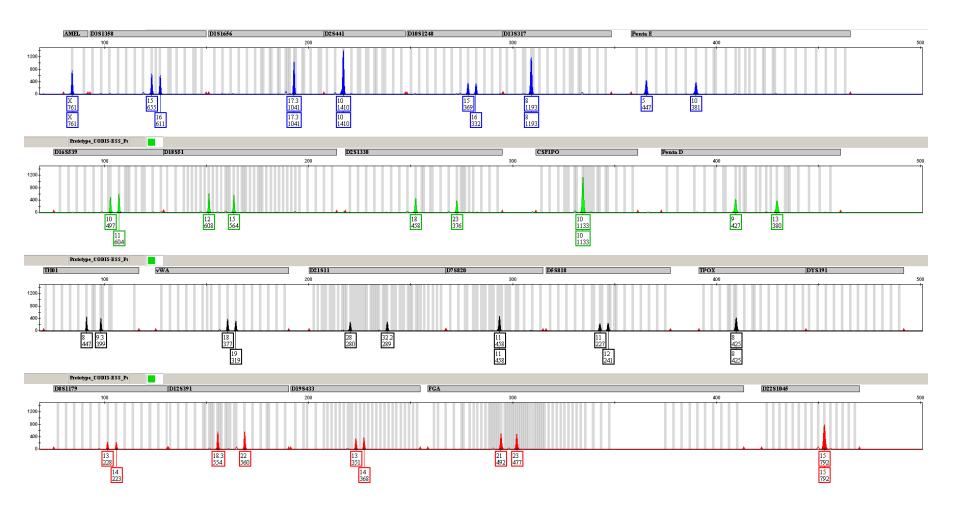
Includes Penta D and E

vWA

D12S391

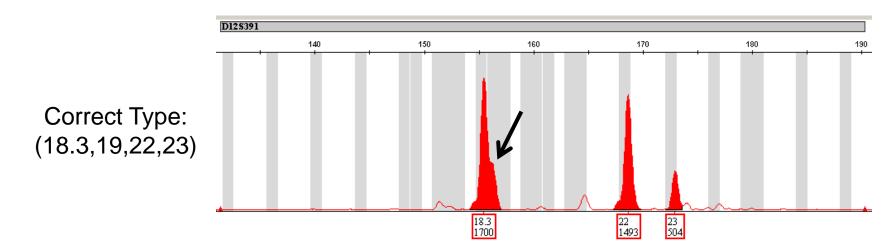
TH01

D8S1179


TMR-ET

CXR-ET

- Direct amplification and casework capabilities: 85 min amp for both (one kit)
- PowerPlex Fusion gives ~13 orders of magnitude improvement using the NIST 1036 data set


http://www.promega.com/products/pm/genetic-identity/powerplex-fusion/

Component A

SRM 2391c Concordance: PowerPlex Fusion

- All SRM 2391c components run with PowerPlex Fusion were concordant at all loci
- Component D at D12S391 shows lack of resolution between 18.3 and 19 (run on 3130xl):

Future Directions

- Sequencing of Components A-C, E & F will be completed for all remaining autosomal and Y-STR loci, including noncore loci to raise all reference and informational genotypes to a certified level (Component D is a mixture of Components A and C).
- Once sequencing is complete, the SRM 2391c Certificate of Analysis will be updated with this new information.
- We anticipate the update to occur in the Fall of 2014

- This work also supports the high throughput next generation sequencing technologies at NIST for forensic typing applications.
- SRM 2391c has replaced SRM 2395 for Y-STR typing.

Acknowledgments

<u>NIST Funding</u>: Interagency Agreement 2008-DN-R-121 between the National Institute of Justice and NIST Office of Law Enforcement Standards

NIST Disclaimer: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Points of view are mine and do not necessarily represent the official position or policies of the US Department of Justice or the National Institute of Standards and Technology.

NIST Team for This Work

Pete Vallone Margaret Kline

Contact Info: becky.hill@nist.gov, 301-975-4275